[Tran Quang Hung]:
Let ABC be a triangle
Let ABC be a triangle
Excircles (Ia),(Ib),(Ic) touch BC,CA,AB at A',B',C', resp.
Draw tangnets B'Ab,C'Ac to (Ia) with Ab,Ac lie on (Ia).
Similarly, we have Bc,Ba,Ca,Cb.
Then
- Lines AbAc,BcBa,CaAb bound a triangle which is perspective to A'B'C'.
- Perpendicular bisectors of AbAc,BcBa,CaCb are concurrent.
.[Angel Monesdeoca]:
Dear Tran Quang Hung,
*** Lines AbAc,BcBa,CaAb bound a triangle which is perspective to A'B'C'. Perspector W on X(517)X(938)
W = ( (a-b-c)/(a^4-2 a^2 (b^2-b c+c^2)+b^4-2 b^3 c+10 b^2 c^2-2 b c^3+c^4) : ... : ....)
with (6-9-13)-search numbers (2.73241028071413, 2.68000811504665, 0.524161811160948).
*** Perpendicular bisectors of AbAc,BcBa,CaCb are concurrent at X(4882).
Best regards,
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου