Τρίτη 22 Οκτωβρίου 2019

HYACINTHOS 25070

[Tran Quang Hung]:


Let ABC be a triangle 
 
Excircles (Ia),(Ib),(Ic) touch BC,CA,AB at A',B',C', resp.
 
Draw tangnets B'Ab,C'Ac to (Ia) with Ab,Ac lie on (Ia).
 
Similarly, we have Bc,Ba,Ca,Cb.
 
Then
 
- Lines AbAc,BcBa,CaAb bound a triangle which is perspective to A'B'C'.
 
- Perpendicular bisectors of AbAc,BcBa,CaCb are concurrent.


 
.[Angel Monesdeoca]:


Dear  Tran Quang Hung,


 *** Lines AbAc,BcBa,CaAb bound a triangle which is perspective to A'B'C'. Perspector W on X(517)X(938)
 
 W = ( (a-b-c)/(a^4-2 a^2 (b^2-b c+c^2)+b^4-2 b^3 c+10 b^2 c^2-2 b c^3+c^4) : ... : ....)

 with (6-9-13)-search numbers (2.73241028071413,  2.68000811504665,  0.524161811160948).
 
 
 ***  Perpendicular bisectors of AbAc,BcBa,CaCb are concurrent at X(4882).

 Best regards,
 Angel Montesdeoca

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου