[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C', A"B"C" the pedal triangles of H, N, resp.
Denote:Ba, Bb, Bc = the orthogonal projections of B* on AA', BB', CC', resp.
Ca, Cb, Cc = the orthogonal projections of C* on AA', BB', CC', resp.
L1, L2, L3 = the reflections of La, Lb, Lc in BC, CA, AB, resp.
5. the parallels to La, Lb, Lc through A', B', C' resp. are concurrent
6. the parallels to La, Lb, Lc through A", B", C" resp. are concurrent
7. the parallels to La, Lb, Lc through A*, B*, C* resp. are concurrent
8. the parallels to L1, L2, L3 through A', B', C', resp. are concurrent.
[Peter Moses]:
Hi Antreas,
1) a^2 (a^4 b^2-2 a^2 b^4+b^6+a^4 c^2+2 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^2 c^4+c^6) (a^8-2 a^6 b^2+2 a^2 b^6-b^8-2 a^6 c^2+a^4 b^2 c^2-a^2 b^4 c^2+2 b^6 c^2-a^2 b^2 c^4-2 b^4 c^4+2 a^2 c^6+2 b^2 c^6-c^8)::
on lines {{2,7731},{5,10628},...}.
2) X(10096).
3) 2 a^10-a^8 b^2-6 a^6 b^4+4 a^4 b^6+4 a^2 b^8-3 b^10-a^8 c^2+18 a^6 b^2 c^2-7 a^4 b^4 c^2-19 a^2 b^6 c^2+9 b^8 c^2-6 a^6 c^4-7 a^4 b^2 c^4+30 a^2 b^4 c^4-6 b^6 c^4+4 a^4 c^6-19 a^2 b^2 c^6-6 b^4 c^6+4 a^2 c^8+9 b^2 c^8-3 c^10::
on Euler line {2,3}
on Euler line {2,3}
4) a^2 (a^2-b^2-c^2) (a^6+a^4 b^2-5 a^2 b^4+3 b^6-a^4 c^2+5 a^2 b^2 c^2-5 b^4 c^2-a^2 c^4+b^2 c^4+c^6) (a^6-a^4 b^2-a^2 b^4+b^6+a^4 c^2+5 a^2 b^2 c^2+b^4 c^2-5 a^2 c^4-5 b^2 c^4+3 c^6)::
On lnes {{4,10264},{54,5663},{64,9919} ,{74,2070},{125,3521},...}.
5) {a^2 (a^8 b^2-2 a^6 b^4+2 a^2 b^8-b^10+a^8 c^2+4 a^6 b^2 c^2-a^4 b^4 c^2-7 a^2 b^6 c^2+3 b^8 c^2-2 a^6 c^4-a^4 b^2 c^4+10 a^2 b^4 c^4-2 b^6 c^4-7 a^2 b^2 c^6-2 b^4 c^6+2 a^2 c^8+3 b^2 c^8-c^10) (a^10-3 a^8 b^2+2 a^6 b^4+2 a^4 b^6-3 a^2 b^8+b^10-3 a^8 c^2+7 a^6 b^2 c^2-4 a^4 b^4 c^2-a^2 b^6 c^2+b^8 c^2+2 a^6 c^4-4 a^4 b^2 c^4+6 a^2 b^4 c^4-2 b^6 c^4+2 a^4 c^6-a^2 b^2 c^6-2 b^4 c^6-3 a^2 c^8+b^2 c^8+c^10)::
6) a^2 (a^2-b^2-b c-c^2) (a^2-b^2+b c-c^2) (a^8 b^2-2 a^6 b^4+2 a^2 b^8-b^10+a^8 c^2+4 a^6 b^2 c^2-a^4 b^4 c^2-7 a^2 b^6 c^2+3 b^8 c^2-2 a^6 c^4-a^4 b^2 c^4+10 a^2 b^4 c^4-2 b^6 c^4-7 a^2 b^2 c^6-2 b^4 c^6+2 a^2 c^8+3 b^2 c^8-c^10)::
On lines {{3,7731},{5,113},{110,6102},. ..}.
7) a^2 (a^12 b^2-4 a^10 b^4+5 a^8 b^6-5 a^4 b^10+4 a^2 b^12-b^14+a^12 c^2-2 a^8 b^4 c^2-5 a^6 b^6 c^2+12 a^4 b^8 c^2-7 a^2 b^10 c^2+b^12 c^2-4 a^10 c^4-2 a^8 b^2 c^4+14 a^6 b^4 c^4-9 a^4 b^6 c^4-2 a^2 b^8 c^4+3 b^10 c^4+5 a^8 c^6-5 a^6 b^2 c^6-9 a^4 b^4 c^6+10 a^2 b^6 c^6-3 b^8 c^6+12 a^4 b^2 c^8-2 a^2 b^4 c^8-3 b^6 c^8-5 a^4 c^10-7 a^2 b^2 c^10+3 b^4 c^10+4 a^2 c^12+b^2 c^12-c^14)::
On lines {{3,8157},{5,113},{20,7731},{5 1,10113},{52,1986},{110,186},. ..}.
8) a^8 b^2-2 a^6 b^4+2 a^2 b^8-b^10+a^8 c^2+4 a^6 b^2 c^2-a^4 b^4 c^2-7 a^2 b^6 c^2+3 b^8 c^2-2 a^6 c^4-a^4 b^2 c^4+10 a^2 b^4 c^4-2 b^6 c^4-7 a^2 b^2 c^6-2 b^4 c^6+2 a^2 c^8+3 b^2 c^8-c^10::
On lines {{2,3},{113,1154},...}.
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου