[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:A*B*C* = the triangle bounded by L1, L2, L3
1. A'B'C', A*B*C* are orthologic
2. A"B"C", A*B*C* are orthologic
[Peter Moses]:
Hi Antreas,
1) (r + R) X[1] + (r + 4 R) X[7] = 3 a^3 b+a^2 b^2-3 a b^3-b^4+3 a^3 c+4 a^2 b c+3 a b^2 c+a^2 c^2+3 a b c^2+2 b^2 c^2-3 a c^3-c^4:: {{1,7},{10,3901},{11,113},...} .
the other orthology X(1621).
2) 3 R X[1] - 2(r + 4 R) X[7] = a^4+2 a^3 b-2 a b^3-b^4+2 a^3 c+a^2 b c+2 a b^2 c+2 a b c^2+2 b^2 c^2-2 a c^3-c^4:: {{1,7},{4,5561},{30,5425},...} .
the other orthology, also X(1621).
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου