[Antreas P. Hatzipolakis]:
Let ABC be a triangle.
Denote:
A', B', C' = the reflections of O in BC, CA, AB, resp.
Nab, Nac = the NPC centers of AOB', AOC', resp.
Nbc, Nba = the NPC centers of BOC', BOA', resp.
Nca, Ncb = the NPC centers of COA', COB', resp.
Oa, Ob, Oc = the circumcenters of ANabNac, BNbcNba, CNcaNcb
ABC, OaObOc are orthologic.
The orthologic center (OaObOc, ABC) is the N. The other one?
[Angrl Montesdeoca]:
The orthologic center (ABC,OaObOc) is
W = ( (b^2-c^2)^6
-4 (b^2-c^2)^4 (b^2+c^2) a^2
+(5 b^8-2 b^6 c^2-7 b^4 c^4-2 b^2 c^6+5 c^8) a^4
-4 b^2 c^2 (b^2+c^2) a^6
+(-5 b^4-4 b^2 c^2-5 c^4) a^8
+4 (b^2+c^2)a^10
-a^12 : ... : ... ),
with (6,9,13)-search numbers in ETC: (0.0855948998410226, 0.0857542228846969, 3.54179083536835).
W lies on lines:
{324,9381}, {1370,10155}, {3153,9221}, {5189,7608}, {7394,7612}, {7533,7607}
Angrl Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου