Let ABC be a triangle, A'B'C' the pedal triangle of I and IaIbIc the antipedal triangle of I (exentral triangle).
Denote:
Na, Nb, Nc = the NPC centers of IaBC, IbCA, IcAB, resp.
N1, N2, N3 = the reflections of Na, Nb, Nc in IA', IB', IC', resp.
ABC, N1N2N3 are orthologic.
The orthologic center (N1N2N3, ABC) lies on the OI line.
[Peter Moses]:
Hi Antreas,
>The orthologic center (N1N2N3, ABC) lies on the OI line.
a (2 a^3-5 a^2 b-2 a b^2+5 b^3-5 a^2 c+10 a b c-5 b^2 c-2 a c^2-5 b c^2+5 c^3)::
on lines {{1,3},{5,3626},{8,3545},{10, 547},{30,3244},...}.
the other is
a (3 a^3-3 a^2 b-3 a b^2+3 b^3-a^2 c+5 a b c-b^2 c-3 a c^2-3 b c^2+c^3) (3 a^3-a^2 b-3 a b^2+b^3-3 a^2 c+5 a b c-3 b^2 c-3 a c^2-b c^2+3 c^3)::
on lines {{80,5433},{499,7319},...}.
This is the isogonal conjugate of a point on lines {{1,3},{4,9897},{79,10944},... }.
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου