[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of N.
Denote:Oba, Obb, Obc = the orthogonal projections of Ob on NA', NB', NC', resp.
Oca, Ocb, Occ = the orthogonal projections of Oc on NA', NB', NC', resp.
We have: Oba = Oca =: A", Ocb = Oab = : B", Oac = Obc =: C"
A'B'C', NaNbNc are congruent and homothetic.
Homothetic center (on the line at infinity)?
A"B"C", NaNbNc are inversely homothetic.
Homothetic center?
[Peter Moses]
>A"B"C", NaNbNc are inversely homothetic.
Hi Antreas,
>A'B'C', NaNbNc are congruent and homothetic.
X(5663).
>Homothetic center (on the line atinfinity)?
X(5663).
a^2 (a^6 b^2-3 a^4 b^4+3 a^2 b^6-b^8+a^6 c^2+2 a^4 b^2 c^2+6 a^2 b^4 c^2-9 b^6 c^2-3 a^4 c^4+6 a^2 b^2 c^4+20 b^4 c^4+3 a^2 c^6-9 b^2 c^6-c^8)::
on lines {{5,113},{143,3091},{381,10263 },{511,3856},{546,1216},...}.
on lines {{5,113},{143,3091},{381,10263 },{511,3856},{546,1216},...}.
(J^2 - 8) X[5] - J^2 X[113], J = |OH|/R.
9 X[5] - X[185], 17 X[5] - 9 X[373], 3 X[546] + X[1216], X[143] - 5 X[3091], 11 X[5] - 3 X[9730], 9 X[381] - X[10263].
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου