[Antreas P. Hatzipolakis]:
Let ABC be a triangle.
[Peter Moses]:
Hi Antreas,
1) a (a^3-2 a^2 b-a b^2+2 b^3-2 a^2 c+3 a b c-2 b^2 c-a c^2-2 b c^2+2 c^3)::
on lines {{1,3},{8,4867},{10,5443},{12, 5844},{79,1320},{80,946},{145, 1478},{499,10595},{519,5086},{ 758,4861},{944,10483},{952, 3585},{958,3899},{1125,5330},{ 1483,7354},{1698,5289},{1731, 1953},{1770,5882},{1837,3656}, {1845,6198},{2779,7727},{3241, 4295},{3242,9047},{3583,10950} ,{3621,10590},{3623,4293},{ 3632,10827},{3633,9612},{3635, 4292},{3636,5442},{3679,5730}, {3869,5258},{3872,5904},{3877, 5259},{3878,5251},{3919,5253}, {3940,4668},{3970,4919},{4299, 7967},{4301,10572},{4677,4930} ,{4880,8666},{5270,10944},{ 5433,10283},{5444,6684},{5603, 7741},{7356,7979}}.
on lines {{1,3},{8,4867},{10,5443},{12, 5844},{79,1320},{80,946},{145, 1478},{499,10595},{519,5086},{ 758,4861},{944,10483},{952, 3585},{958,3899},{1125,5330},{ 1483,7354},{1698,5289},{1731, 1953},{1770,5882},{1837,3656}, {1845,6198},{2779,7727},{3241, 4295},{3242,9047},{3583,10950} ,{3621,10590},{3623,4293},{ 3632,10827},{3633,9612},{3635, 4292},{3636,5442},{3679,5730}, {3869,5258},{3872,5904},{3877, 5259},{3878,5251},{3919,5253}, {3940,4668},{3970,4919},{4299, 7967},{4301,10572},{4677,4930} ,{4880,8666},{5270,10944},{ 5433,10283},{5444,6684},{5603, 7741},{7356,7979}}.
Reflection of X(i) in X(j) for these {i,j}: {{35, 1}, {5288, 4861}}.
3 X[35] - 4 X[2646], 3 X[1] - 2 X[2646].
(4r + R)X[1] - 2 r X[3].
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,65,5563),(1,484,1385),(1, 3336,1319),(1,3340,5902),(1, 5697,3746),(1,5903,36),(1, 7280,10246),(1,7982,5697),(1, 7991,3612),(56,10247,1),(65, 10222,1),(942,5048,1),(1389, 10698,946),(1482,2099,1),( 5603,10573,7741).
2) at 1).
3) a (a^3+a^2 b-a b^2-b^3+a^2 c-3 a b c+b^2 c-a c^2+b c^2-c^3)::
on lines {{1,3},{4,7161},{8,191},{9, 5560},{10,3583},{11,5445},{63, 3632},{71,1731},{78,3899},{79, 495},{80,3467},{100,3878},{ 214,5330},{238,3987},{404, 3884},{498,962},{515,4324},{ 516,3585},{519,6763},{550, 5559},{595,4642},{758,3871},{ 944,1768},{946,6949},{1018, 3496},{1203,4646},{1320,5303}, {1334,5011},{1478,6361},{1479, 5657},{1621,3754},{1698,4193}, {1699,6941},{1737,4857},{1749, 5441},{1759,3208},{1770,5270}, {1776,4330},{1837,3654},{1900, 7713},{2779,9904},{2802,2975}, {2943,6127},{3218,3244},{3219, 3626},{3555,4880},{3633,3895}, {3679,5086},{3730,5540},{3751, 9047},{3753,5259},{3869,8715}, {3870,3901},{3880,3916},{3885, 8666},{3898,5253},{3913,5904}, {3918,5047},{3935,4067},{4063, 6161},{4294,10573},{4295, 10056},{4299,9778},{4325, 10106},{4333,9613},{4338,5290} ,{4421,5730},{4640,5258},{ 4861,5267},{5251,5836},{5252, 10483},{5432,5443},{5444,5901} ,{5506,9780},{5531,5693},{ 5561,5726},{5687,5692},{6192, 7150},{6932,9589},{6963,9588}, {7031,9620},{9580,10826},{ 9785,10072}}.
on lines {{1,3},{4,7161},{8,191},{9, 5560},{10,3583},{11,5445},{63, 3632},{71,1731},{78,3899},{79, 495},{80,3467},{100,3878},{ 214,5330},{238,3987},{404, 3884},{498,962},{515,4324},{ 516,3585},{519,6763},{550, 5559},{595,4642},{758,3871},{ 944,1768},{946,6949},{1018, 3496},{1203,4646},{1320,5303}, {1334,5011},{1478,6361},{1479, 5657},{1621,3754},{1698,4193}, {1699,6941},{1737,4857},{1749, 5441},{1759,3208},{1770,5270}, {1776,4330},{1837,3654},{1900, 7713},{2779,9904},{2802,2975}, {2943,6127},{3218,3244},{3219, 3626},{3555,4880},{3633,3895}, {3679,5086},{3730,5540},{3751, 9047},{3753,5259},{3869,8715}, {3870,3901},{3880,3916},{3885, 8666},{3898,5253},{3913,5904}, {3918,5047},{3935,4067},{4063, 6161},{4294,10573},{4295, 10056},{4299,9778},{4325, 10106},{4333,9613},{4338,5290} ,{4421,5730},{4640,5258},{ 4861,5267},{5251,5836},{5252, 10483},{5432,5443},{5444,5901} ,{5506,9780},{5531,5693},{ 5561,5726},{5687,5692},{6192, 7150},{6932,9589},{6963,9588}, {7031,9620},{9580,10826},{ 9785,10072}}.
Reflection of X(i) in X(j) for these {i,j}: {{1, 35}, {3585, 10039}, {4861, 5267}, {5288, 3916}}.
3 X[1] - 4 X[2646], 3 X[35] - 2 X[2646], 3 X[3679] - 2 X[5086].
(2r - R)X[1] - 4 r X[3].
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,40,484),(1,46,3337),(1,165, 7280),(1,484,3336),(1,5131,56) ,(3,5697,1),(36,3057,1),(40, 1697,46),(40,5119,1),(46,1697, 1),(46,3337,3336),(46,5119, 1697),(55,5903,1),(65,3746,1), (191,5541,8),(484,3337,46),( 1155,9957,5563),(1737,10624, 4857),(1759,3208,5525),(3057, 3579,36),(3245,3746,65),(3295, 5902,1),(3612,7982,1),(4424, 5255,1),(4640,10914,5258),( 5563,9957,1),(5690,6284,80).
Also the parallels to La, Lb, Lc through triangle T’s vertices are concurrent for T
intouch: a (2 a-3 b-3 c) (a+b-c) (a-b+c)::
on lines {{1,3},{7,1392},{8,6933},{12, 519},...}.
on lines {{1,3},{7,1392},{8,6933},{12, 519},...}.
first circum perp: a^2 (a^5-a^4 b-2 a^3 b^2+2 a^2 b^3+a b^4-b^5-a^4 c+a^3 b c-a^2 b^2 c-a b^3 c+2 b^4 c-2 a^3 c^2-a^2 b c^2+4 a b^2 c^2-b^3 c^2+2 a^2 c^3-a b c^3-b^2 c^3+a c^4+2 b c^4-c^5)
on lines {{1,3},{4,993},{5,5251},{8, 6796},{10,6905},{20,5450},{21, 946},...}.
on lines {{1,3},{4,993},{5,5251},{8, 6796},{10,6905},{20,5450},{21, 946},...}.
second circum perp: X(35).
tangential mid arc: a ((a+b+c) (a^3-a^2 b-a b^2+b^3-a^2 c+a b c-b^2 c-a c^2-b c^2+c^3)+2 a b (2 a-3 b-3 c) c Sin[A/2]+2 c (a^3-a^2 b+2 a b^2-b^3+a^2 c+b^2 c-a c^2+b c^2-c^3) Sin[B/2]+2 b (a^3+a^2 b-a b^2-b^3-a^2 c+b^2 c+2 a c^2+b c^2-c^3) Sin[C/2])::
on lines {{35,8077},{517,8091},...}.
on lines {{35,8077},{517,8091},...}.
hexyl: a (a^6-2 a^5 b-a^4 b^2+4 a^3 b^3-a^2 b^4-2 a b^5+b^6-2 a^5 c+5 a^4 b c-5 a^3 b^2 c-3 a^2 b^3 c+7 a b^4 c-2 b^5 c-a^4 c^2-5 a^3 b c^2+12 a^2 b^2 c^2-5 a b^3 c^2-b^4 c^2+4 a^3 c^3-3 a^2 b c^3-5 a b^2 c^3+4 b^3 c^3-a^2 c^4+7 a b c^4-b^2 c^4-2 a c^5-2 b c^5+c^6)
on lines {{1,3},{8,6326},{10,6949},...} .
on lines {{1,3},{8,6326},{10,6949},...} .
Conway: 3 a^4-a^3 b-2 a^2 b^2+a b^3-b^4-a^3 c-a^2 b c-2 a^2 c^2+2 b^2 c^2+a c^3-c^4::
on lines {{7,1392},{8,4640},{10,21},{ 20,145},...}
on lines {{7,1392},{8,4640},{10,21},{ 20,145},...}
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου