[Antreas P. Hatzipolakis]:
Let ABC be a triangle and IaIbIc the antipedal triangle of I (excentral triangle).
Denote:
A', B', C' = the reflections of Ia, Ib, Ic in BC, CA, AB, resp.
Ma, Mb, M = the midpoints of AA', BB', CC', resp.
- ABC, A'B'C' are cyclologic.
ie
the circumcircles of AB'C', BC'A, CA'B' are concurrent at X.
the circumcircles of A'BC, B'CA', C'AB are concurrent at Y.
- ABC, MaMbMc are cyclologic.
ie
the circumcircles of AMbMc, BMcMa, CMaMb are concurrent at Z.
the circumcircles of MaBC, MbCA, McAB are concurrent at T.
Y = Z ?
[Peter Moses]:
Hi Antreas,
1).
X = a^2 (a^4-2 a^2 b^2+b^4-a^3 c+a^2 b c+a b^2 c-b^3 c-a^2 c^2-b^2 c^2+a c^3+b c^3) (a^4-a^3 b-a^2 b^2+a b^3+a^2 b c+b^3 c-2 a^2 c^2+a b c^2-b^2 c^2-b c^3+c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6+2 a^4 b c+2 a^3 b^2 c-2 a^2 b^3 c-2 a b^4 c-3 a^4 c^2+2 a^3 b c^2-2 a^2 b^2 c^2+2 a b^3 c^2+b^4 c^2-2 a^2 b c^3+2 a b^2 c^3+3 a^2 c^4-2 a b c^4+b^2 c^4-c^6):: {{1,915},{84,224},{155,3435},{ 913,5190},...}.
On K269.
Y = X(80).
2).
Z = X(80).
T = a (b+c) (a^4-2 a^2 b^2+b^4+a^2 b c+a b^2 c-a b c^2-c^4) (a^4-b^4+a^2 b c-a b^2 c-2 a^2 c^2+a b c^2+c^4):: {{3,191},{4,2778},{54,5494},{ 65,125},{67,3827},{69,2836},{ 72,7068},{73,2632},{74,2766},{ 110,960},{265,517},{518,895},. ..}.
midpoint of X(3448) & X(3869).
reflection of X(i) in X(j) for these {i,j}: {{65, 125}, {110, 960}}.
on Jerabek.
on K685, K720.
X(3724)-crossconjugate of X(37).
X(i)-isoconjugate of X(j) for these {i,j}: {{1,1325},{58,5080},{ 162,2850}}.
X(3)-crosssum of X(2948).
trilinear pole of line X(647) X(2092).
Best regards,
Peter Moses.
[APH]:
Thanks, Peter !
X(80) is the antigonal conjugate of the incenter I.
It is true for any point P:
Let ABC be a triangle and PaPbPc the antipedal triangle of P.
Denote:
A', B', C' = the reflections of Pa,Pb, Pc in BC, CA, AB, resp.
ABC, A'B'C' are cyclologic.
The cyclologic center (A'B'C', ABC) is the antigonal conjugate of P.
APH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου