[Antreas P. Hatzipolakis]:
Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Denote:
A", B", C" = the orthogonal projections of A', B', C' on the Euler line, resp.
La, Lb, Lc = the reflections of BC, CA, AB in A'A", B'B", C'C" resp.
A*B*C* = the triangle bounded by La,Lb,Lc
1. ABC, A*B*C* are parallelogic.
The parallelogic center (ABC, A*B*C*) lies on the circumcircle.
2. Which is the locus of the parallelogic center (A*B*C*, ABC) as P moves on the Euler line?
3. Which is the locus of P such that La, Lb, Lc are concurrent?
O lies on the locus
[César Lozada]:
Suppose P=u:v:w (trilinears). Then
1) Parallelogic center (ABC,A*B*C*) = X(476)
Parallelogic center (A*B*C*,ABC) = Z*(P) =
-2*(a^6-a^4*b^2-a^4*c^2-a^2*b^ 4+3*a^2*b^2*c^2-a^2*c^4+b^6-b^ 4*c^2-b^2*c^4+c^6)^2*a*b*c*u-( a^2-c^2)*c*(a^2-a*c-b^2+c^2)*( a^2+a*c-b^2+c^2)*(a^8-4*a^6*c^ 2-a^4*b^4+6*a^4*c^4-2*a^2*b^6+ 4*a^2*b^4*c^2-4*a^2*c^6+2*b^8- 2*b^6*c^2-b^4*c^4+c^8)*v-(a^2- b^2)*b*(a^2-a*b+b^2-c^2)*(a^2+ a*b+b^2-c^2)*(a^8-4*a^6*b^2+6* a^4*b^4-a^4*c^4-4*a^2*b^6+4*a^ 2*b^2*c^4-2*a^2*c^6+b^8-b^4*c^ 4-2*b^2*c^6+2*c^8)*w : :
Z*(O) = X(3258)
Z*(H) = (-2*cos(A)*cos(B-C)+1)*((2* cos(4*A)-3)*cos(B-C)+(-2*cos( A)-2*cos(3*A))*cos(2*(B-C))- cos(3*A)-cos(5*A)+5*cos(A)) : :
= on line {113,403}
= [ -2.473491099993588, -3.83676727166032, 7.438499254592410 ]
Z*(N) = (-cos(2*A)+5*cos(4*A)+cos(6*A) -13/2)*cos(B-C)+(5*cos(A)-cos( 3*A)-cos(5*A))*cos(2*(B-C)) +(cos(2*A)+cos(4*A)+1/2)*cos( 3*(B-C))-2*cos(5*A)+4*cos(A)- 4*cos(3*A) : :
= on lines: {511,3233}, {1154,10096}
= [ 0.741910787392766, -0.61380402264393, 3.723185364941206 ]
2) For P such that OP=t*OH, OZ*(P)=t*X(3258)Z*(H)
3) The line {O,X(526)} (no other ETC center on it), but for P=X(526) the lines La,Lb,Lc coincide.
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου