[Tran Quang Hung]:
Let ABC be a triangle with incenter I.
A'B'C' is cevian triangle of I.
Na,Nb,Nc are NPC center of triangles IB'C',IC'A',IA'B'.
N1,N2,N3 are NPC center of triangles INbNc,INcNa,INaNb.
Then NPC center of triangle N1N2N3 lies on OI line of triangle ABC.
Is this new point ?
[Angel Montesdeoca]:
*** The NPC center of triangle N1N2N3 is N' = (2r^2+5rR+4s^2 ) I + r(2r+3R) O, of barycentric coordinates:
(a (7a^5(b+c)
+a^4(b^2+4b c+c^2)
-a^3(14b^3+9b^2c+9b c^2+14c^3)
-2a^2(b^4+5b^3c+7b^2c^2+5b c^3+c^4)
+a(b-c)^2(7b^3+16b^2c+16b c^2+7c^3)
+(b^2-c^2)^2(b^2+6b c+c^2)) : ... : ...),
with (6-9-13)-search numbers (1.93658689736328, 1.89366701233398, 1.43585490535472).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου