[Antreas P. Hatzipolakis]:
?
A", B", C" = the reflections of A', B', C' in the Euler line, resp.
Na, Nb, Nc = the NPC centers of A"B'C', B"C'A', C"A'B', resp.
[Angel Montesdeoca]:
Dear Antreas,
The locus of P such that Na, Nb, Nc are collinear is the cubic K187 of
the catalogue of Bernard Gibert (locus of foci of inscribed conics
centered on the Euler line) and a circum-quintic through the points
X(74), X(1304)
The points of intersection of the OH line (Euler line) and the line
NaNbNc for:
1. P = H is W on lines {2,3} and {143,523}
W = (2 a^14 (b^2+c^2)
-3 a^12 (3 b^4+2 b^2 c^2+3 c^4)
+5 a^10 (3 b^6+b^4 c^2+b^2 c^4+3 c^6)
-a^8 (10 b^8+3 b^6 c^2-2 b^4 c^4+3 b^2 c^6+10 c^8)
+2 a^6 (5 b^8 c^2-4 b^6 c^4-4 b^4 c^6+5 b^2 c^8)
+a^4 (b^2-c^2)^2 (3 b^8-8 b^6 c^2-8 b^2 c^6+3 c^8)
-a^2 (b^2-c^2)^4 (b^6-3 b^4 c^2-3 b^2 c^4+c^6)
-b^2 c^2 (b^2-c^2)^6+: ... : ...),
with (6-9-13)-search number (0.348196355837922,
-0.522242117838248, 3.84151070694720).
2. P = O is X(140) =midpoint of X(3) and X(5)
Best regards
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου