Let ABC be a triangle.
The parallels to L'1, L'2, L'3 through:
[...]
5. The parallels to L'1, L'2, L'3 through A1, B1, C1 (where A1, B1, C1 are the orthogonal projections of the excenters Ia, Ib, Ic, resp. on the sides B'C', C'A', A'B' of the pedal triangle of I) are concurrent in
W5 = (r+2R) X(1) - r X(21) = (r+4R) X(7) - (r+2R) X(79).
W5 = (a (a^4 (b-c)^2-a^5 (b+c)+(b^2-c^2)^2 (b^2-b c+c^2)-a (b-c)^2 (b^3+4 b^2 c+4 b c^2+c^3)+a^3 (2 b^3+3 b^2 c+3 b c^2+2 c^3)+a^2 (-2 b^4+3 b^3 c+6 b^2 c^2+3 b c^3-2 c^4)):...:...)
with (6-9-13)-search number (1.52086596235072, 1.62091170244161, 1.81655670528601).
W5 is the midpoint of X(i) and X(j) for these {i,j}: {3647,3874}.
W5 lies on lines X(i)X(j) for {i,j}: {1,21}, {7,79}, {20,5441}, {27,1844}, {30,553}, {46,7675}, {57,3651}, {65,4304}, {72,5325}, {142,442}, {226,6841}, {354,946}, {377,5883}, {938,2475}, {1012,5884}, {1100,3284}, {1387,2771}, {1697,8000}, {1699,9960}, {1729,2280}, {2646,5427}, {3085,5686}, {3336,7411}, {3555,5837}, {3584,4015}, {3648,9965}, {3833,4197}, {4313,5903}, {5044,6675}, {5249,6701}, {5273,5904}, {5570,6744}, {5719,10021}, {5735,7671}, {5836,8261}.
6. The parallels to L'1, L'2, L'3 through A2, B2, C2 (where A2, B2, C2 are the orthogonal projections of the vertices A', B', C', resp. of the pedal triangle of I on the sides IbIc, IcIa, IaIb of the excentral triangle) are concurrent in
W6 = (r+3R)X(21) - (r+4R)X(142) = (2r+R) X(35) - (2r+5R) X(79).
W6 = (2 a^7-a^6 (b+c)-(b-c)^4 (b+c)^3+5 a b c (b^2-c^2)^2+a^3 (b+c)^2 (2 b^2-3 b c+2 c^2)-a^5 (4 b^2+6 b c+4 c^2)+a^4 (b^3-4 b^2 c-4 b c^2+c^3)+a^2 (b-c)^2 (b^3+6 b^2 c+6 b c^2+c^3):...:...)
with (6-9-13)-search number (-1.13150673357715, -1.02446396734287, 4.87214264402659).
W6 lies on lines X(i)X(j) for {i,j}: {4, 1768}, {9, 3648}, {21, 142}, {30, 553}, {35, 79}, {63, 2475}, {191, 3474}, {442, 1155}, {516, 3649}, {1708, 7701}, {1836, 5248}, {3874, 7354}, {3911, 6841}, {5122, 10021}, {5325, 6175}, {5441, 5557}
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου