-
[APH]:
Let ABC be a triangle and A'B'C' the pedal triangle of H.Denote:Let Na, Nb, Nc be the NPC centers of A'AbAc, B'BcBa, C'CaCb, resp.ABC, NaNbNc are orthologic.[Peter Moses]:
Hi Antreas,>The NPCs of A'AbAc, B'BcBa, C'CaCb are concurrent.
At(a^2-b^2-c^2) (2 a^14-6 a^12 b^2+5 a^10 b^4+a^8 b^6-4 a^6 b^8+4 a^4 b^10-3 a^2 b^12+b^14-6 a^12 c^2+12 a^10 b^2 c^2-9 a^8 b^4 c^2+8 a^6 b^6 c^2-12 a^4 b^8 c^2+12 a^2 b^10 c^2-5 b^12 c^2+5 a^10 c^4-9 a^8 b^2 c^4-4 a^6 b^4 c^4+8 a^4 b^6 c^4-21 a^2 b^8 c^4+9 b^10 c^4+a^8 c^6+8 a^6 b^2 c^6+8 a^4 b^4 c^6+24 a^2 b^6 c^6-5 b^8 c^6-4 a^6 c^8-12 a^4 b^2 c^8-21 a^2 b^4 c^8-5 b^6 c^8+4 a^4 c^10+12 a^2 b^2 c^10+9 b^4 c^10-3 a^2 c^12-5 b^2 c^12+c^14):: on lines {{6,13},{49,5972},{125,1147},{ 539,6699},...}>ABC, NaNbNc are orthologic.At X(265) & X(6102).Also, NaNbNc is perspective to the medial triangle at X(1147) and orthologic to it at X(1511) and X(6102).Orthic & NaNbNc are orthologic at X(113) & {{4,542},{5,539},...}.Tangential & NaNbNc orthologic at X(2931) & {{4,542},{5,539},...}.Euler & NaNbNc orthlogic at {{4,94},{5,1511},{30,125},{ 74,382},{110,381},{113,137},.. .} & X(6102).It is orthologic to plenty of other triangles too, even the Hatzipolakis-Moses triangle at {{6,13},{54,125},...} & {{52,54},{140,389},...} !Orthic & NaNbNc are paralogic at X(125) & {{2,9705},{3,539},{5,542},...} .Tangential & NaNbNc are paralogic at {{3,113},{6,1112},{22,110},{ 23,1503},{24,64},{25,125},{26, 1498},...} & {{2,9705},{3,539},{5,542},...} .Intangents & NaNbNc are paralogic at {{1,2777},{33,125},{56,2935},{ 65,74},{73,9627},{110,3100},{ 113,1062},...} & {{2,9705},{3,539},{5,542},...} .Extangents & NaNbNc are paralogic at {{19,125},{40,2777},{65,2906}, {74,6197},{110,3101},{113, 8251},...}, & {{2,9705},{3,539},{5,542},...} .....Best regards,Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου