-
Antreas P. Hatzipolakis
[APH]:
Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:
H' = the orthocenter of A'B'C'
Ab, Ac = the orth. projections of A on H'B', H'C', resp.
L1 = te Euler line of AAbAc. Similarly L2, L3
L1, L2, L3 are concurrent.
Furthermore:
The parallels to L1, L2, L3 through
1. A, B,C, resp.
2. A', B', C', resp.
3. A", B", C" = vertices of the orthic triangle of A'B'C'
are concurrent.
*** L1, L2, L3 are concurrent in X(5836) = midpoint of X(8) and X(65).
*** The parallels to L1, L2, L3 through A, B, C, resp. are concurrent in X(8).
*** The parallels to L1, L2, L3 through A', B', C', resp. are concurrent in X(145).
*** The parallels to L1, L2, L3 through A'', B'', C'', resp. are concurrent in
W=(2 a^4-a^3 (b+c)+a (b-c)^2 (b+c)-(b^2-c^2)^2-a^2 (b^2-6 b c+c^2):...:...)
W=(2R-r)X(1)+rX(4)
ETC numbers search (0.850772564114176, 0.753388534762742, 2.72642354363440)
Angel Montesdeoca
Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:
H' = the orthocenter of A'B'C'
Ab, Ac = the orth. projections of A on H'B', H'C', resp.
L1 = te Euler line of AAbAc. Similarly L2, L3
L1, L2, L3 are concurrent.
Furthermore:
The parallels to L1, L2, L3 through
1. A, B,C, resp.
2. A', B', C', resp.
3. A", B", C" = vertices of the orthic triangle of A'B'C'
are concurrent.
*** L1, L2, L3 are concurrent in X(5836) = midpoint of X(8) and X(65).
*** The parallels to L1, L2, L3 through A, B, C, resp. are concurrent in X(8).
*** The parallels to L1, L2, L3 through A', B', C', resp. are concurrent in X(145).
*** The parallels to L1, L2, L3 through A'', B'', C'', resp. are concurrent in
W=(2 a^4-a^3 (b+c)+a (b-c)^2 (b+c)-(b^2-c^2)^2-a^2 (b^2-6 b c+c^2):...:...)
W=(2R-r)X(1)+rX(4)
ETC numbers search (0.850772564114176, 0.753388534762742, 2.72642354363440)
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου