[Tran Quang Hung]:
Let ABC be a triangle and its excenters Ia,Ib,Ic
Denote:
A', B', C' = the reflections of Ia,Ib,Ic in BC, CA, AB, resp.
A", B", C" = the reflections of Ia,Ib,Ic in A', B', C', resp.
The Euler lines of A"BC, B"CA, C"AB are concurrent.
[Angel Montesdeoca]:
*** They intersect at W=(7a^3-a^2(b+c)-a(4b^2+b c+4c^2)-2(b-c)^2(b+c) : ... : ...)
On lines {8, 30}, {21, 551}, {79, 3634}, {191, 6175}, {527, 2346}, {553, 5284}, {1281, 6054}, {2796, 4921}, {2975, 3656}, {3624, 3647}
Search numbers (7.24647969768325, 4.60988537952130, -2.89532371823033)
Angel M.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου