[Seiichi Kirikami]:
Dear friends,Let ABCDEF be a hexagon and AD, BE, CF concur in a point P.Denote:Oa=the circumcenter of APF,Ob=the circumcenter of CPB,Oc=the circumcenter of EPD,O1=the circumcenter of BPA,O2=the circumcenter of DPC,O3=the circumcenter of FPE,1) OaObOc and O1O2O3 are cyclologic at points Q and R.2) Oa, Ob, Oc, O1, O2, O3 are on a conic K.3) Q and R are on K.See the attached picture.A synthetic proof is needed because algebraic computation often fails in case of cyclology.Best regards,Seiichi.[APH]:
Dear Seiichi,If we take OaObOc as reference trianlgle ABC then it is equivalent to:
Let ABC be a triangle P a point, and L1, L2, L3 three lines passing through P.
Denote:
C2 = the other than P intersection of the line L2 and the circle (C, CP)
B3 = the other than P intersection of the line L3 and the circle (B, BP)
O1 = the circumcenter of PC2B3
Similarly O2, O3
The triangles ABC, O1O2O3 are cycllologic.
We can apply it in different ways in order to get triangle centersHere is such a way:Let P be the Schiffler point and L1, L2, L3 the Euler lines of IBC, ICA, IAB (cncurrent at P)(And in general let Q be a point on the Neuberg cubic and P the intersection
of the Eluler lines L1, L2, L3 of QBC, QCA, QAB, resp)Antreas P, Hatzipolakis
************************************************[Angel Montesdeoca]:[APH]:Let P=X(21) be the Schiffler point and L1, L2, L3 the Euler lines of IBC, ICA, IAB (concurrent at P)Denote:C2 = the other than P intersection of the line L2 and the circle (C, CP)B3 = the other than P intersection of the line L3 and the circle (B, BP)O1 = the circumcenter of PC2B3Similarly O2, O3The triangles ABC, O1O2O3 are cycllologic.*** The first barycentric coordinate of the cyclologic center ABC-O1O2O3 is:a (a^9+a^7 (-6 b^2+7 b c-6 c^2)-(b-c)^4 (b+c)^3 (2 b^2+5 b c+2 c^2)+a^6 (2 b^3-3 b^2 c-3 b c^2+2 c^3)+a (b^2-c^2)^2 (3 b^4-b^3 c+2 b^2 c^2-b c^3+3 c^4)+a^5 (12 b^4-15 b^3 c+13 b^2 c^2-15 b c^3+12 c^4)+a^4 (-6 b^5+3 b^4 c+5 b^3 c^2+5 b^2 c^3+3 b c^4-6 c^5)+a^3 (-10 b^6+9 b^5 c-3 b^4 c^2+5 b^3 c^3-3 b^2 c^4+9 b c^5-10 c^6)+a^2 (6 b^7+3 b^6 c-11 b^5 c^2+b^4 c^3+b^3 c^4-11 b^2 c^5+3 b c^6+6 c^7))Exact trilinear coordinates at the tirángulo ETC (6-9-13):(3.10306953362835054,4.70121811205322202,-1.04621091888093639)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου