Antreas Hatzipolakis[APH]:
Let ABC be a triangle and Na,Nb,Nc the NPC centers of
IBC,ICA, IAB, resp.
Denote:
Ka, Kb, Kc = the isogoanal conjugates of Na,Nb,Nc
wrt IBC,ICA,IAB, resp.
ie Ka, Kb, Kc = the Kosnita points X(54) of
IBC,ICA,IAB, resp.
Ka,Kb,Kc lie on the OI line.
The circumcircles of AKbKc, BKcKa, CKaKb, ABC
are concurrent.
Which is the radical center of the circumcircles of
KaBC, KbCA, KcAB?
*********************************
[César Lozada]
Antreas:
>The circumcircles of AKbKc, BKcKa, CKaKb, ABC are concurrent.
Answer:
Z= a/((b-c)*(b^4+a*b^3+4*b^2*c*a-2*b^2*c^2-3*a^2*b^2+4*b*c^2*a-4*b*c*a^2-a^3*b+c^3*a-c*a^3+2*a^4-3*c^2*a^2+c^4)) : : (trilinears)
ETC_SEARCH: -0.415179481263028, 0.86263677436611, 3.235075706390779Z lie on circumcircle and line (X(1385)X(2687))
>Which is the radical center of the circumcircles of KaBC, KbCA, KcAB?Answer: X(484)=1st Evans perspector
*********************************
[Angel Montesdeoca]:
*** Kosnita points of IBC
Ka = (a^2(a-b)(a-c) : b(a-b)(a^2- b^2+c^2-a(b+2c)) : c(a-c)(a^2+b^2-c^2-a(2b+c))
*** The circumcircles of AKbKc, BKcKa, CKaKb, ABC are concurrent in
( a^2/((b-c)(2a^4-a^3(b+c)-a^2(3b^2+4b*c+3c^2)+a(b+c)(b^2+3b*c+c^2)+(b^2-c^2)^2)) : ... : ... ),
with (6-9-13)-search number -0.4151794812633478152167
*** The circumcircles of KaBC, KbCA, KcAB are concurrent in X(484).
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου