Antreas P. HatzipolakisLet ABC be a triangle and P a point.
Denote:
Pa = the reflection of P in BC
Pab, Pac = the reflections of Pa in PB, PC, resp.N1 = the NPC center of PaPabPac
Similarly N2, N3.
Which is the locus of P such that ABC, N1N2N3 are orthologic?
Points on the locus:
P = O
Orthologic center (PaPbPc, ABC) = OP = N
Orthologic center (ABC, PaPbPc) on the circumcircle of ABC
P = H
Orthologic centers?
APH
[César Lozada]:
>Which is the locus of P such that ABC, N1N2N3 are orthologic?
Excentral-Circum-septic with trilinears:
-(a^2-c^2)*a*c*b^2*u^2*v^5*(c^2+a^2-b^2)-(a^2-c^2)*a*c*b^2*v^5*w^2*(c^2+a^2-b^2)-(b^2-c^2)*b*c*a^2*u^5*v^2*(-b^2-c^2+a^2)+(a^2-b^2)*a*b*c^2*u^2*w^5*(a^2+b^2-c^2)+(a^2-b^2)*a*b*c^2*v^2*w^5*(a^2+b^2-c^2)-(b^2-c^2)*b*c*a^2*u^5*w^2*(-b^2-c^2+a^2)-(a^2-c^2)*u*w*b^2*v^5*(c^2+a^2-b^2)^2+(5*(b^2-c^2))*b*c*a^2*u^3*v^2*w^2*(-b^2-c^2+a^2)-(5*(a^2-b^2))*a*b*c^2*u^2*v^2*w^3*(a^2+b^2-c^2)+(5*(a^2-c^2))*a*c*b^2*u^2*v^3*w^2*(c^2+a^2-b^2)-b*c*(-b^4*c^2+b^2*a^4+4*b^2*a^2*c^2-2*b^4*a^2+b^6+c^6-b^2*c^4-2*c^4*a^2+c^2*a^4)*v^2*u*w^4-c*a*(-c^4*a^2+c^6+a^6+b^4*c^2-2*b^2*a^4+4*b^2*a^2*c^2+b^4*a^2-2*b^2*c^4-c^2*a^4)*v*u^4*w^2+(b^2-c^2)*v*w*a^2*u^5*(-b^2-c^2+a^2)^2+(a^2-b^2)*u*v*c^2*w^5*(a^2+b^2-c^2)^2-b^2*c*a*(-c^4-b^4+2*b^2*c^2+2*a^4-a^2*b^2-3*c^2*a^2)*v^3*u^4-b*c*a^2*(3*b^2*c^2-2*b^4+a^4+a^2*b^2+c^4-2*c^2*a^2)*v^4*u^3-b^2*c*a*(b^4+3*c^2*a^2-2*c^4+b^2*c^2+a^4-2*a^2*b^2)*v^3*w^4-a*b*(a^6-2*b^4*c^2+4*b^2*a^2*c^2-b^2*a^4+b^2*c^4-b^4*a^2+c^4*a^2+b^6-2*c^2*a^4)*v^4*u^2*w+c*a*(-c^4*a^2+c^6+a^6+b^4*c^2-2*b^2*a^4+4*b^2*a^2*c^2+b^4*a^2-2*b^2*c^4-c^2*a^4)*v*u^2*w^4+a*b*(a^6-2*b^4*c^2+4*b^2*a^2*c^2-b^2*a^4+b^2*c^4-b^4*a^2+c^4*a^2+b^6-2*c^2*a^4)*v^2*u^4*w+b*c*a^2*(3*b^2*c^2-2*c^4+a^4+c^2*a^2+b^4-2*a^2*b^2)*u^3*w^4+b*c^2*a*(2*b^2*c^2-c^2*a^2-b^4-c^4+2*a^4-3*a^2*b^2)*u^4*w^3+b*c^2*a*(b^2*c^2+a^4-2*b^4-2*c^2*a^2+3*a^2*b^2+c^4)*v^4*w^3+b*c*(-b^4*c^2+b^2*a^4+4*b^2*a^2*c^2-2*b^4*a^2+b^6+c^6-b^2*c^4-2*c^4*a^2+c^2*a^4)*v^4*u*w^2-(4*(a^2-c^2))*b^2*a^2*c^2*v*u^3*w^3+(4*(b^2-c^2))*b^2*a^2*c^2*v^3*u*w^3+(4*(a^2-b^2))*b^2*a^2*c^2*v^3*u^3*w=0
Through: I, O, H, N and ETC´s X(1113) and X(1114)
>>Points on the locus:
>P = O
>Orthologic center (PaPbPc, ABC) = OOrthologic center (ABC,Pa,Pb,Pc) = (4*cos(B)^2-1)*(4*cos(C)^2-1)*cos(B)*cos(C) : :
= Polar conjugate of X(323)
= (4,94)/\(5,93)
= ( 0.057823351506902, 0.10216734279162, 3.543245543894689 )
>>P = N
>Orthologic center (ABC, PaPbPc) on the circumcircle of ABC
Orthologic center (ABC,Pa,Pb,Pc) = F(A,B,C) : :
= On Circumcircle = ( 8.408292668302881, 0.33594393418884, -0.472662550209222 )
Orthologic center (PaPbPc, ABC) = G(A,B,C) ::
= ( 0.681537831448283, 0.29986859608845, 3.118507223947013 )
Where
F(A,B,C) =
[3*cos(A)+cos(3*A)+cos(5*A)-cos(7*A)
+(3*cos(2*A)-cos(6*A)+1/2)*cos(B-C)
+(3*cos(A)+3*cos(3*A)-cos(5*A))*cos(2*(B-C))
+(-cos(2*A)+cos(4*A)+2)*cos(3*(B-C))
+(cos(A)-cos(3*A))*cos(4*(B-C))]^(-1)
G(A,B,C) =
5*cos(A)-4*cos(3*A)+3*cos(5*A)-cos(7*A)
+(-7*cos(2*A)-cos(4*A)+cos(6*A)+7)*cos(B-C)
+(5*cos(A)-3*cos(3*A)+cos(5*A))*cos(2*(B-C))
+(-3*cos(2*A)+5/2)*cos(3*(B-C))
+(cos(A)-2*cos(3*A))*cos(4*(B-C))
>>P = H
>>Orthologic centers?
Orthologic center (ABC,Pa,Pb,Pc) = X(265)
Orthologic center (PaPbPc, ABC) =X(6240)
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου