Antreas Hatzipolakis wrote:
APHWhich point is the point of concurrence?The circumcircles of A*BC, B*CA, C*AB are concurrent.B'C' at A*.Similarly B*, C*The perpendicular bisector of the altitude AA' intersects
Let ABC be a triangle and A'B'C' the orthic triangle.[CL]
The point of concurrence is (trilinears):
Z = (b^2-c^2)^2/(a*(a^6-(b^2+c^2)*a^4+(b^4-b^2*c^2+c^4)*a^2-(b^2+c^2)*(b^2-c^2)^2)) : :
= sin(B-C)^2/(cos(A)*(-7+4*cos(B-C)^2+4*cos(A)^2)+cos(B-C)) : :
= Antigonal conjugate of X(115)
= Inverse of X(3447) in Circumcircle
= On loci: K072, K474, K567
= On lines: (3,3447)
= ( 3.705235940218338, 3.23560265347782, -0.309477019831803 )
César Lozada
[Randy Hutson]:
Dear Antreas and César,
Another construction of this point: Let A'B'C' be the tangential triangle of the Kiepert hyperbola. This point is the radical center of circumcircles of A'BC, B'CA, C'AB.
Best regards,
Randy Hutson
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου