Δευτέρα 21 Οκτωβρίου 2019

HYACINTHOS 22624

Antreas P. Hatzipolakis
 
[Antreas]:
 
Let ABC be a triangle.

Denote:

Ab, Ac = the reflections of A in OB, OC, resp.

Na = the NPC center of AAbAc. Similarly Nb, Nc.

The circumcircles of ABC, ANbNc BNcNa, CNaNb
are concurrent at a point Q1

The circumcircles of NaNbNc, NaBC, NbCA, NcAB 
are concurrent at a pint Q2.
(ABC, NaNbNc share the same circumcenter)

Which points are Q1, Q2 ?

APH
 
 
 
[Angel Montesdeoca]:
 

Dear Antreas

 
Q1=X(930)
 
Q2 = (a^2(a^6(b^2+c^2) -
               a^4(3b^4+4b^2c^2+3c^4) +
              a^2(3b^6+2b^4c^2+2b^2c^4+3c^6) 
             -b^8+b^6c^2+b^2c^6-c^8) :...:...)
with (6-9-13)-search number 8.07910137097857081131659206
 
Best regards
 Angel Montesdeoca
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου