Antreas P. Hatzipolakis[Antreas]:
Let ABC be a triangle.
Denote:
Ab, Ac = the reflections of A in OB, OC, resp.
Na = the NPC center of AAbAc. Similarly Nb, Nc.
The circumcircles of ABC, ANbNc BNcNa, CNaNb
Denote:
Ab, Ac = the reflections of A in OB, OC, resp.
Na = the NPC center of AAbAc. Similarly Nb, Nc.
The circumcircles of ABC, ANbNc BNcNa, CNaNb
are concurrent at a point Q1
The circumcircles of NaNbNc, NaBC, NbCA, NcAB
The circumcircles of NaNbNc, NaBC, NbCA, NcAB
are concurrent at a pint Q2.
(ABC, NaNbNc share the same circumcenter)
(ABC, NaNbNc share the same circumcenter)
Which points are Q1, Q2 ?
APH
[Angel Montesdeoca]:
Dear Antreas
Q1=X(930)Q2 = (a^2(a^6(b^2+c^2) -a^4(3b^4+4b^2c^2+3c^4) +a^2(3b^6+2b^4c^2+2b^2c^4+3c^6)-b^8+b^6c^2+b^2c^6-c^8) :...:...)with (6-9-13)-search number 8.07910137097857081131659206Best regardsAngel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου