Dear All My Friends,
Reflect point P in BC, CA, AB of reference triangle ABC we
get reflection triangle PaPbPc. Q is isogonal conjugate of P wrt triangle
PaPbPc.
Denote the transform as Q = gR(P).
If barycentrics of P = {p : q : r} then barycentrics of Q:
a^2*(p*(b^2*c^2*p - c^2*q*(c^2 - a^2) - b^2*r*(b^2 - a^2)) +
q*r*(a^2*(b^2 + c^2) - (b^2 - c^2)^2)) : :
Some special cases
P = X(1)
Barycentrics of Q:
a*((a – b + c)*(a + b - c)*(b + c) – a*b*c) : :
Search value: -0.6308558824469 not in current ETC.
P = X(2)
Barycentrics of Q:
a^2*(2*a^2*(b^2 + c^2) - 2*(b^2 - c^2)^2 - b^2*c^2) : :
Search value: -0.715622153886 not in current ETC.
P = X(3), Q = X(4)
P = X(4), Q = X(4)
P = X(5), Q = X(143)
P = X(6)
Barycentrics of Q:
3*a^4 - (b^2 - c^2)^2 : :
Search value: -0.3718585039795 not in current ETC.
Any other interesting facts of the transform gR(P)?
Best regards,
Bui Quang Tuan
Δευτέρα 21 Οκτωβρίου 2019
HYACINTHOS 20331
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου