-
Jan 20, 2000Euler Midway Trinagles
Definition:
Let P be a point on the Euler Line of a triangle ABC, and A', B', C'
the midpoints of AP, BP, CP, respectively. The triangle A'B'C'
is the P-Euler Midway Triangle (P-EMT).
Note: I found the term "midway triangle" in a posting of Paul Yiu:
>The perpendicular bisectors of QX, QY, QZ bound
>the ``midway'' triangle with Q as homothetic center.
(Subject: RE: [EMHL] point identification; Date: Tue, 11 Jan 2000)
Notation:
Q(P) = The Point Q of the P-Euler Midway Triangle.
[For example: H(P) = The orthocenter of the P-EMT]
Trilinear Coordinates of Q(P) (in respect to reference triangle ABC),
for Q, P belonging in {H (Orthocenter), N (Nine-Point Circle Center),
G (Barycenter), O (Circumcenter), L (de Longchamps Point)}.
Q(P) = P(Q) = (kcos(B-C) + lcosA ::)
1. H-Euler Midway Triangle (or Euler Triangle.)
H(H) = H = (cos(B-C) - cosA ::) [= (cosBcosC ::) = (1/cosA ::)]
N(H) = (3cos(B-C) - 2cosA ::)
G(H) = (2cos(B-C) - cosA ::)
O(H) = N = (cos(B-C) ::)
L(H) = O = (cosA ::)
2. N-Euler Midway Triangle.
H(N) = (3cos(B-C) - 2cosA ::)
N(N) = N = (cos(B-C) ::)
G(N) = (5cos(B-C) + 2cosA ::)
O(N) = (cos(B-C) + 2cosA ::)
L(N) = (-cos(B-C) + 6cosA ::)
3. G-Euler Midway Triangle.
H(G) = (2cos(B-C) - cosA ::)
N(G) = (5cos(B-C) + 2cosA ::)
O(G) = (cos(B-C) + 4cosA ::)
G(G) = G = (cos(B-C) + cosA) [= (sinBsinC ::) = (1/sinA ::) = (1/a ::)]
L(G) = (-cos(B-C) + 5cosA ::)
4. O-Euler Midway Triangle.
H(O) = N = (cos(B-C) ::)
N(O) = (cos(B-C) + 2cosA ::)
G(O) = (cos(B-C) + 4cosA ::)
O(O) = O = (cosA ::)
L(O) = (-cos(B-C) + 4cosA ::)
5. L-Euler Midway Triangle.
H(L) = O = (cosA ::)
N(L) = (-cos(B-C) + 6cosA::)
G(L) = (-cos(B-C) + 5cosA ::)
O(L) = L(O) = (-cos(B-C) + 4cosA ::)
L(L) = L = (-cos(B-C) + 3cosA::)
NOTE: The above can be generalized for (P^n)-Euler Midway Triangles
[= The P-EMT of the P-EMT of the P-EMT .... of the P-EMT <n times> of
the Reference Triangle], and also for other triangle lines.
Antreas
Σάββατο 19 Οκτωβρίου 2019
HYACINTHOS 201
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου