Σάββατο 19 Οκτωβρίου 2019

HYACINTHOS 201

  • Antreas P. Hatzipolakis
    Jan 20, 2000
    Euler Midway Trinagles

    Definition:
    Let P be a point on the Euler Line of a triangle ABC, and A', B', C'
    the midpoints of AP, BP, CP, respectively. The triangle A'B'C'
    is the P-Euler Midway Triangle (P-EMT).
    Note: I found the term "midway triangle" in a posting of Paul Yiu:
    >The perpendicular bisectors of QX, QY, QZ bound
    >the ``midway'' triangle with Q as homothetic center.
    (Subject: RE: [EMHL] point identification; Date: Tue, 11 Jan 2000)

    Notation:
    Q(P) = The Point Q of the P-Euler Midway Triangle.
    [For example: H(P) = The orthocenter of the P-EMT]

    Trilinear Coordinates of Q(P) (in respect to reference triangle ABC),
    for Q, P belonging in {H (Orthocenter), N (Nine-Point Circle Center),
    G (Barycenter), O (Circumcenter), L (de Longchamps Point)}.

    Q(P) = P(Q) = (kcos(B-C) + lcosA ::)

    1. H-Euler Midway Triangle (or Euler Triangle.)

    H(H) = H = (cos(B-C) - cosA ::) [= (cosBcosC ::) = (1/cosA ::)]


    N(H) = (3cos(B-C) - 2cosA ::)

    G(H) = (2cos(B-C) - cosA ::)

    O(H) = N = (cos(B-C) ::)

    L(H) = O = (cosA ::)
    2. N-Euler Midway Triangle.

    H(N) = (3cos(B-C) - 2cosA ::)

    N(N) = N = (cos(B-C) ::)

    G(N) = (5cos(B-C) + 2cosA ::)

    O(N) = (cos(B-C) + 2cosA ::)

    L(N) = (-cos(B-C) + 6cosA ::)

    3. G-Euler Midway Triangle.

    H(G) = (2cos(B-C) - cosA ::)

    N(G) = (5cos(B-C) + 2cosA ::)

    O(G) = (cos(B-C) + 4cosA ::)

    G(G) = G = (cos(B-C) + cosA) [= (sinBsinC ::) = (1/sinA ::) = (1/a ::)]

    L(G) = (-cos(B-C) + 5cosA ::)

    4. O-Euler Midway Triangle.

    H(O) = N = (cos(B-C) ::)

    N(O) = (cos(B-C) + 2cosA ::)

    G(O) = (cos(B-C) + 4cosA ::)

    O(O) = O = (cosA ::)

    L(O) = (-cos(B-C) + 4cosA ::)

    5. L-Euler Midway Triangle.

    H(L) = O = (cosA ::)

    N(L) = (-cos(B-C) + 6cosA::)

    G(L) = (-cos(B-C) + 5cosA ::)

    O(L) = L(O) = (-cos(B-C) + 4cosA ::)

    L(L) = L = (-cos(B-C) + 3cosA::)


    NOTE: The above can be generalized for (P^n)-Euler Midway Triangles
    [= The P-EMT of the P-EMT of the P-EMT .... of the P-EMT <n times> of
    the Reference Triangle], and also for other triangle lines.


    Antreas

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου