Σάββατο 19 Οκτωβρίου 2019

HYACINTHOS 1190

  • Hello Hyacinthos'members,
    it's my first contribution:
    do you know the following result?

    The perpendicular bisectors of the sides of the triangle ABC cut the
    other sides at 6
    points lying on 3 circles. (4 points on one circle)
    The centers ot these circles form a triangle homothetic to ABC.
    The center of homothety is point X(184) of the encyclopedia of
    triangle centers.
    The radical center of the 3 circles is the center of the circumcircle
    of ABC.

    The trilinear coordinates of the centers are:

    1)
    {-a^5 + (b^2 + c^2)*a^3 - 2*b^2*c^2*a , b^3*(a^2 - b^2 + c^2) ,
    c^3*(a^2 +
    b^2 - c^2)}
    =
    {-a^4 + (b^2 + c^2)*a^2 - 2*b^2*c^2, 2*b^3*c*cosB, 2*b*c^3*cosC}

    2)
    {a^3*(-a^2 + b^2 + c^2) , -b^5 + c^2*b^3 + a^2*(b^3 - 2*b*c^2) ,
    c^3*(a^2
    + b^2 - c^2)}
    =
    {2*a^3*c*cosA, -b^4 + c^2*b^2 + a^2*(b^2 - 2*c^2), 2*a*c^3*cosC}

    3)
    {a^3*(-a^2 + b^2 + c^2) , b^3*(a^2 - b^2 + c^2) , (b^2 - c^2)*c^3 +
    a^2*(
    c^3 - 2*b^2*c)}
    =
    {2*a^3*b*c*cosA, 2*a*b^3*c*cosB, (b^2 - c^2)*c^3 + a^2*(c^3 - 2*b^2*c)}

    The center or homothety is X(184) = {a^2 cosA, b^2 cosB, c^2 cosC}.

    Regards

    Fred Lang, Switzerland

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου