-
Hello Hyacinthos'members,
it's my first contribution:
do you know the following result?
The perpendicular bisectors of the sides of the triangle ABC cut the
other sides at 6
points lying on 3 circles. (4 points on one circle)
The centers ot these circles form a triangle homothetic to ABC.
The center of homothety is point X(184) of the encyclopedia of
triangle centers.
The radical center of the 3 circles is the center of the circumcircle
of ABC.
The trilinear coordinates of the centers are:
1)
{-a^5 + (b^2 + c^2)*a^3 - 2*b^2*c^2*a , b^3*(a^2 - b^2 + c^2) ,
c^3*(a^2 +
b^2 - c^2)}
=
{-a^4 + (b^2 + c^2)*a^2 - 2*b^2*c^2, 2*b^3*c*cosB, 2*b*c^3*cosC}
2)
{a^3*(-a^2 + b^2 + c^2) , -b^5 + c^2*b^3 + a^2*(b^3 - 2*b*c^2) ,
c^3*(a^2
+ b^2 - c^2)}
=
{2*a^3*c*cosA, -b^4 + c^2*b^2 + a^2*(b^2 - 2*c^2), 2*a*c^3*cosC}
3)
{a^3*(-a^2 + b^2 + c^2) , b^3*(a^2 - b^2 + c^2) , (b^2 - c^2)*c^3 +
a^2*(
c^3 - 2*b^2*c)}
=
{2*a^3*b*c*cosA, 2*a*b^3*c*cosB, (b^2 - c^2)*c^3 + a^2*(c^3 - 2*b^2*c)}
The center or homothety is X(184) = {a^2 cosA, b^2 cosB, c^2 cosC}.
Regards
Fred Lang, Switzerland
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου