[Corneliu Manescu-Avram]:
Let ABC be a triangle and d1, d2 two perpendicular lines intersecting each other at H.
Denote:
D, E, F = the orthogonal projections of A, B, C on d1. resp.
X, Y, Z = the orthogonal projections of A, B, C on d2 resp.
Then DX, EY, FZ are concurrent.
Note:
As the line d1 moves around H, the point of concurrence moves on the NPC.
Like a line d when is moving around O: its orthopole moves on the NPC.
Question:
Which are the points of concurrence for some special d1's: Euler line, HI, HK, and possibly others passing through H.
APH
---------------------------------------
[Ercole Suppa]:
Hi Antreas,
Let Q = Q(d1) be the concurrency point of the lines DX, EY, FZ.
We have:
*** if d1 = HO (Euler line) then
Q(HO) = X(3258)
*** if d1 = HI then
Q(HI) = X(10017)
*** if d1 = HK then
Q(HK) = COMPLEMENT OF X(2867)
= (b-c)^2 (b+c)^2 (-a^2+b^2+c^2) (-a^4+b^4+a^2 b c-b^3 c-b c^3+c^4) (-a^4+b^4-a^2 b c+b^3 c+b c^3+c^4) (-2 a^6+a^4 b^2+b^6+a^4 c^2-b^4 c^2-b^2 c^4+c^6) : : (barys)
= 3*X[2]-X[2867]
= lies on the nine-point circle and these lines: {2,2867}, {4,32687}, {113,15341}, {122,647}, {125,6587}, {127,525}, {132,1503}, {133,5523}, {1560,32125}, {2697,2715}, {6794,18809}, {13509,18402}, {14401,16177}, {17434,20625}
= complement of X(2867)
= complementary conjugate of X(2881)
= reflection of X(1562) in X(14117)
= (6-9-13) search numbers: [2.4512998320928429880, 3.3877200492212084435, 0.1639506791729995708]
Best regards,
Ercole Suppa
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου