[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of I.
A'B'C', N1N2N3, M1M2M3 share the same Euler line L.
Intouch triangle version:
Denote:
Na, Nb, Nc = the NPC centers of IBC, ICA, IAB, resp.
N1, N2, N3 = the reflections of Na, Nb, Nc in AI, BI, CI, resp.
MaMbMc = the medial triangle of NaNbNc
M1, M2, M3 = the reflections of Ma, Mb, Mc in AI, BI, CI, resp.
L = the Euler line of A'B'C' = OI line of ABC
A"B"C" = the reflection of A'B'C' in L
Na, Nb, Nc = the NPC centers of IBC, ICA, IAB, resp.
N1, N2, N3 = the reflections of Na, Nb, Nc in AI, BI, CI, resp.
MaMbMc = the medial triangle of NaNbNc
M1, M2, M3 = the reflections of Ma, Mb, Mc in AI, BI, CI, resp.
L = the Euler line of A'B'C' = OI line of ABC
A"B"C" = the reflection of A'B'C' in L
A'B'C', N1N2N3, M1M2M3 share the same Euler line L.
1. A"B"C", N1N2N3, M1M2M3 are homothetic.
Which are the homothetic centers of
Which are the homothetic centers of
1.1. A"B"C", N1N2N3,
1.2. N1N2N3, M1M2M3,
1.2. N1N2N3, M1M2M3,
1.3. M1M2M3, A"B"C" ?
2.
2.1. Which points wrt triangle ABC are O, H, etc...... of N1N2N3 ?
2.
2.1. Which points wrt triangle ABC are O, H, etc...... of N1N2N3 ?
2.2. Which points wrt triangle ABC are O, H, etc..... of M1M2M3 ?
3. Which point is I of ABC wrt triangle
3.1. N1N2N3
3.2. M1M2M3 ?
3.1. N1N2N3
3.2. M1M2M3 ?
[Peter Moses]:
Hi Antreas,
1.1 X(65).
1.2 X(3).
1.3 X(2646).
2.1
O -> X(10222).
H -> X(65).
2.2
O -> X(15178).
H -> COMPLEMENT OF X(5887) =
= X[1] - 3 X[10202], X[1] - 5 X[15016], 3 X[1] - X[23340], 3 X[3] - X[14110], 3 X[4] + X[9961], X[40] + 3 X[5902], 3 X[65] + X[14110], X[72] - 3 X[26446], 3 X[354] - X[1482], X[355] - 3 X[3753], 3 X[381] - X[12688], 2 X[548] - 3 X[10178], 5 X[631] - X[3869], 3 X[942] - 2 X[6583], X[942] + 2 X[13145], 3 X[942] + X[31798], X[946] - 3 X[5883], X[1071] + 3 X[3753], X[1657] - 3 X[5918], 5 X[1698] - X[5693], X[3057] - 3 X[10246], 7 X[3526] - 5 X[25917], 3 X[3576] + X[5903], X[3579] + 2 X[31794], 5 X[3698] - 3 X[5790], 5 X[3698] - X[14872], 3 X[3740] - 2 X[31835], 3 X[3742] - 2 X[5901], 2 X[3754] + X[13369], 4 X[3812] - X[31937], X[3868] + 3 X[5657], 3 X[3873] + X[12245], X[3878] - 3 X[10165], X[3901] + 7 X[9588], 3 X[3919] + X[4297], 7 X[3922] + X[12680], 7 X[3922] - X[18525], 7 X[4002] - 3 X[18908], 5 X[4004] + 3 X[10167], 5 X[4004] + X[18481], X[4084] + 3 X[10164], 2 X[5044] - 3 X[11231], 3 X[5049] - X[13600], 3 X[5049] - 2 X[33179], 3 X[5054] - X[31165], 5 X[5439] - 3 X[5886], 5 X[5439] - X[12672], 3 X[5587] + X[15071], 3 X[5692] - 7 X[31423], X[5694] - 3 X[11231], 3 X[5790] - X[14872], 5 X[5818] - X[12528], 3 X[5885] - X[6583], 2 X[5885] + X[31788], 6 X[5885] + X[31798], 3 X[5886] - X[12672], 3 X[5902] - X[24474], X[5903] - 3 X[10273], X[6583] + 3 X[13145], 2 X[6583] + 3 X[31788], 2 X[6583] + X[31798], X[7672] + 3 X[21151], 3 X[7967] + X[14923], X[7982] - 5 X[18398], 3 X[10164] - X[31806], 3 X[10165] - 2 X[31838], 3 X[10167] - X[18481], 3 X[10175] - X[31803], 3 X[10202] - 2 X[13373], 3 X[10202] - 5 X[15016], 9 X[10202] - X[23340], 3 X[10246] + X[25413], 3 X[10247] - 5 X[17609], X[10693] - 3 X[15061], 3 X[11227] - 2 X[13624], 3 X[11227] - X[31786], 3 X[11246] + X[11827], 6 X[13145] - X[31798], 2 X[13373] - 5 X[15016], 6 X[13373] - X[23340], 15 X[15016] - X[23340], 3 X[15064] - 5 X[31399], X[16004] + 2 X[17706], 5 X[31666] - 6 X[33574], 3 X[31788] - X[31798]
= lies on these lines: {1, 3}, {2, 5887}, {4, 9961}, {5, 3812}, {8, 6897}, {10, 912}, {30, 7686}, {72, 5552}, {84, 18761}, {119, 125}, {140, 960}, {182, 3827}, {224, 5687}, {355, 377}, {381, 12688}, {392, 6910}, {404, 21740}, {515, 3754}, {516, 31870}, {518, 5690}, {519, 12005}, {548, 10178}, {601, 3924}, {631, 3869}, {758, 6684}, {944, 4190}, {946, 5883}, {950, 5840}, {952, 5836}, {958, 24467}, {962, 6899}, {971, 5880}, {1064, 24443}, {1125, 2800}, {1158, 3560}, {1483, 3880}, {1490, 18491}, {1519, 6831}, {1657, 5918}, {1698, 5693}, {1706, 5534}, {1737, 1858}, {1770, 7491}, {1788, 6825}, {1836, 6928}, {1837, 6923}, {1871, 14018}, {1888, 7510}, {1898, 10826}, {1902, 7414}, {2182, 16547}, {2390, 5892}, {2392, 31760}, {2649, 9356}, {2778, 12041}, {2801, 3918}, {2802, 13607}, {2818, 9729}, {2975, 26877}, {3474, 6868}, {3485, 6891}, {3486, 6948}, {3526, 25917}, {3555, 12648}, {3556, 6642}, {3577, 9841}, {3616, 6977}, {3627, 15726}, {3634, 20117}, {3654, 11239}, {3698, 5790}, {3740, 31835}, {3742, 5901}, {3868, 5657}, {3873, 12245}, {3874, 11362}, {3878, 10165}, {3881, 28234}, {3901, 9588}, {3919, 4297}, {3922, 12680}, {4002, 18908}, {4004, 6934}, {4084, 10164}, {4292, 5841}, {4295, 6827}, {4511, 6940}, {4848, 18389}, {5044, 5694}, {5054, 31165}, {5057, 6902}, {5086, 6951}, {5437, 7971}, {5439, 5886}, {5450, 30147}, {5553, 30513}, {5587, 15071}, {5603, 6890}, {5692, 31423}, {5721, 23604}, {5722, 10525}, {5770, 19843}, {5784, 5833}, {5787, 18517}, {5806, 22793}, {5818, 12528}, {5927, 6984}, {6259, 17649}, {6261, 6911}, {6265, 17614}, {6824, 14647}, {6836, 10531}, {6850, 18391}, {6862, 10200}, {6863, 24914}, {6882, 12047}, {6883, 12514}, {6913, 12686}, {6942, 9352}, {6947, 11415}, {6955, 10914}, {6958, 11375}, {6971, 17605}, {6980, 17606}, {6985, 12520}, {7672, 21151}, {7967, 14923}, {7992, 18540}, {8094, 8130}, {8129, 12445}, {9947, 17528}, {10039, 10956}, {10044, 10404}, {10085, 18519}, {10175, 31803}, {10265, 25639}, {10391, 31775}, {10543, 24466}, {10609, 32900}, {10693, 15061}, {10935, 11047}, {11112, 26201}, {11246, 11827}, {11374, 12709}, {11491, 18444}, {11499, 18446}, {11684, 26878}, {12433, 12710}, {12515, 12775}, {12564, 16004}, {12594, 24476}, {12664, 31828}, {12749, 17660}, {12778, 13217}, {12905, 13211}, {13374, 22791}, {14054, 20612}, {15064, 31399}, {15952, 18165}, {16049, 18180}, {16154, 17637}, {19860, 22758}, {31752, 31836}, {33597, 33858}
= complement of X(5887)
= midpoint of X(i) and X(j) for these {i,j}: {3, 65}, {10, 5884}, {40, 24474}, {355, 1071}, {942, 31788}, {1770, 7491}, {3057, 25413}, {3576, 10273}, {3654, 24473}, {3874, 11362}, {4084, 31806}, {5690, 24475}, {5836, 12675}, {5885, 13145}, {6259, 17649}, {6265, 17654}, {7686, 9943}, {12680, 18525}, {17660, 19914}, {31787, 31794}
= reflection of X(i) in X(j) for these {i,j}: {1, 13373}, {5, 3812}, {942, 5885}, {960, 140}, {1385, 9940}, {3579, 31787}, {3627, 16616}, {3878, 31838}, {5694, 5044}, {5777, 9956}, {9856, 9955}, {9957, 15178}, {10222, 5045}, {10284, 31792}, {13600, 33179}, {18857, 18856}, {20117, 3634}, {22791, 13374}, {22793, 5806}, {31786, 13624}, {31788, 13145}, {31793, 31663}, {31836, 31752}, {31837, 6684}, {31870, 33815}, {31937, 5}
= {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 40, 10679}, {1, 46, 11509}, {1, 2077, 33596}, {1, 3359, 11248}, {1, 5119, 10965}, {1, 10202, 13373}, {1, 10269, 1385}, {1, 12703, 12000}, {1, 14803, 2646}, {1, 15016, 10202}, {1, 18838, 942}, {1, 24927, 15178}, {3, 10246, 3612}, {3, 11507, 26285}, {3, 16203, 22768}, {40, 3576, 16208}, {40, 5902, 24474}, {40, 18443, 10267}, {65, 13750, 942}, {119, 24982, 9956}, {1071, 3753, 355}, {1385, 3579, 32613}, {1385, 10225, 33862}, {1385, 23961, 13624}, {1385, 32612, 18857}, {1385, 33281, 15178}, {3339, 30503, 5709}, {3359, 11248, 3579}, {3698, 14872, 5790}, {3878, 10165, 31838}, {4084, 10164, 31806}, {5049, 13600, 33179}, {5439, 12672, 5886}, {5554, 10940, 377}, {5554, 12115, 355}, {5690, 32213, 10915}, {5694, 11231, 5044}, {6862, 28628, 11230}, {10225, 33862, 31663}, {10246, 25413, 3057}, {10267, 18443, 1385}, {11227, 31786, 13624}, {12000, 12702, 12703}, {12609, 12616, 5}, {14647, 28629, 6824}
3.1 X(186).
3.2 X(2071).
Best regards,
Peter Moses.
3.1 X(186).
3.2 X(2071).
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου