Παρασκευή 1 Νοεμβρίου 2019

HYACINTHOS 29378

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle and A'B'C' the pedal triangle of O (medial triangle).
 
Denote:
 
A", B", C" = the midpoints of AN, BN, CN, resp.
 
A'A" intersects the NPC (N) again at A*.
B'B" intersects the NPC (N) again at B*
C'C" intersects the NPC (N) again at C*
 
ABC, A*B*C* are perspective.
 
Perspector?
 
 
[Ercole Suppa] 
 
 
Hi Antreas, 
 
the perspector is:
 
Q = X(5)X(20189) ∩ X(1173)X(3628)
 
= (a^4-3 a^2 b^2+2 b^4-2 a^2 c^2-3 b^2 c^2+c^4) (a^4-2 a^2 b^2+b^4-3 a^2 c^2-2 b^2 c^2+c^4) (a^4-3 a^2 b^2+b^4-2 a^2 c^2-2 b^2 c^2+c^4) (a^4-2 a^2 b^2+b^4-3 a^2 c^2-3 b^2 c^2+2 c^4) : : (barys)
 
= 15 S^4 +(-4 R^4+7 R^2 SB+7 R^2 SC+3 SB SC-3 R^2 SW+2 SB SW+2 SC SW+SW^2)S^2 +2 R^4 SB SC+3 R^2 SB SC SW+SB SC SW^2 : : (barys)
 
= lies on these lines: {5,20189}, {1173,3628}, {1656,26862}
 
= barycentric quotient X(115)/X(11792)
 
= trilinear quotient X(1109)/X(11792)
 
= (6-9-13)  search numbers:  [0.0421622367593084073, 0.0371066993821918168, 3.5955157346001039650]
 
 
Best regards
Ercole Suppa

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου