Denote:
Oa, Ob, Oc = the circumcenters of PBC, PCA, PAB, resp.
The reflections of AP, BP, CP in AOa, BOb, COc are concurrent.
[Antreas P. Hatzipolakis]:
Which are the points of concurrence for some points on the cubic?
Hi Antreas
X(1) -> X(1)
X(3) -> X(143)
X(4) -> X(252)
X(13) -> X(6671)
X(14) -> X(6672)
X(30) -> X(265)
X(74) -> X(186)
---------------------------------------------------
X(14) -> X(6672)
X(30) -> X(265)
X(74) -> X(186)
---------------------------------------------------
X(15);
ISOGONAL CONJUGATE OF X(6671) =
= a^2*(Sqrt[3]*(a^4 - 3*a^2*b^2 + 2*b^4 - 2*a^2*c^2 - 3*b^2*c^2 + c^4) - 2*(a^2 + 2*b^2 + c^2)*S)*(Sqrt[3]*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*c^2 - 3*b^2*c^2 + 2*c^4) - 2*(a^2 + b^2 + 2*c^2)*S) : :
= lies on these lines: {6, 2380}, {13, 11600}, {16, 2981}, {17, 299}, {61, 1337}, {8603, 11081}, {8742, 9112}
= isogonal conjugate of X(6671)
= isogonal conjugate of the complement of X(623)
= X(i)-isoconjugate of X(j) for these (i,j): {1, 6671}, {532, 3376}
= cevapoint of X(8603) and X(21461)
= crosssum of X(396) and X(15802)
= barycentric product X(i)*X(j) for these {i,j}: {17, 2981}, {2380, 19779}, {8603, 11119}
= barycentric quotient X(i)/X(j) for these {i,j}: {6, 6671}, {2380, 16771}, {2981, 302}, {8603, 618}, {16459, 8838}, {21461, 396}
---------------------------------------------------
X(16);
ISOGONAL CONJUGATE OF X(6672) =
= a^2*(Sqrt[3]*(a^4 - 3*a^2*b^2 + 2*b^4 - 2*a^2*c^2 - 3*b^2*c^2 + c^4) + 2*(a^2 + 2*b^2 + c^2)*S)*(Sqrt[3]*(a^4 - 2*a^2*b^2 + b^4 - 3*a^2*c^2 - 3*b^2*c^2 + 2*c^4) + 2*(a^2 + b^2 + 2*c^2)*S) : :
= lies on these lines: {6, 2381}, {14, 11601}, {15, 6151}, {18, 298}, {62, 1338}, {8604, 11086}, {8741, 9113}
= isogonal conjugate of X(6672)
= isogonal conjugate of the complement of X(624)
= X(i)-isoconjugate of X(j) for these (i,j): {1, 6672}, {533, 3383}
= cevapoint of X(8604) and X(21462)
= crosssum of X(395) and X(15778)
= barycentric product X(i)*X(j) for these {i,j}: {18, 6151}, {2381, 19778}, {8604, 11120}
= barycentric quotient X(i)/X(j) for these {i,j}: {6, 6672}, {2381, 16770}, {6151, 303}, {8604, 619}, {16460, 8836}, {21462, 395}
---------------------------------------------------
X(1263);
X(5)X(252)∩X(195)X(10615) =
= lies on these lines: {5, 252}, {195, 10615}, {930, 24385}, {3459, 6150}, {3519, 27246}, {19268, 31675}
---------------------------------------------------
X(3065);
= a*(a^3 + a^2*b - a*b^2 - b^3 + a^2*c + a*b*c + b^2*c - a*c^2 + b*c^2 - c^3)*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 2*a^4*b*c + 4*a^3*b^2*c - 4*a^2*b^3*c - 2*a*b^4*c + 2*b^5*c - a^4*c^2 + 4*a^3*b*c^2 - 3*a^2*b^2*c^2 + 4*a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 - 4*a^2*b*c^3 + 4*a*b^2*c^3 - 4*b^3*c^3 - a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - 2*a*c^5 + 2*b*c^5 + c^6) : :
= lies on thses lines: {1, 15038}, {12, 79}, {2975, 10176}, {3336, 17483}
---------------------------------------------------
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου