[Tran Quang Hung]:
Let ABC be a triangle and A'B'C' the pedal triangle of H.
Denote:
Na, Nb, Nc = the NPC centers of AB'C',BC'A',CA'B', resp.
The triangles A'B'C', NaNbNc are cyclologic.
The cyclologic center (A'B'C', NaNbNc) is the orthopole of the Euler line.
Which is the cyclologic center of (NaNbNc, A'B'C') ?
[César Lozada]:
Cyclologic centers: X(125) and
Za = (2*cos(2*A)*cos(B-C)-cos(3*A)) *((cos(2*A)+cos(4*A)+1)*cos(B- C)+(-cos(A)-cos(3*A))*cos(2*( B-C))-cos(A))*sec(A) : : (trilinears)
= On lines: (4,7730), (25,8157), (571,2079), (933,3518)
= [ -2.233472799679084, -6.17738928122346, 8.948152199529426 ]
César Lozada