Σάββατο 30 Οκτωβρίου 2021

HYACINTHOS 24180

Let ABC be a triangle.

Denote:

Ab, Ac = the orthogonal projections of A on NB, NC, resp.

(Oab), (Oac) = the circles with diameters AAb,AAc, resp.

Similarly (Obc), (Oba) and (Oca), (Ocb)

R1 = the radical axis of (Oab), (Oac)
R2 = the radical axis of (Obc), (Oba)
R3 = the radical axis of (Oca), (Ocb)

The reflections of R1, R2, R3 in BC, CA, AB, resp. are concurrent.

[Angel Montesdeoca]:

The reflections of R1, R2, R3 in BC, CA, AB, resp. are concurrent. at

X(195) = X(5)-CEVA CONJUGATE OF X(3)

Πέμπτη 22 Ιουλίου 2021

HYACINTHOS 21468

Let La, Lb, Lc be the reflections of L in BC,CA,AB, resp. (concurrent
on the circumcircle).

Let Ab, Ac be the orth. projections of A' on Lb,Lc, resp. Similarly
Bc,Ba and Ca,Cb.

The circumcircles of A'AbAc, B'BcBa, C'CaCb are coaxial and their NPC
centers are
collinear. Which is this line ? Special case: L = Euler line.